staple
Avec cedram.org

Rechercher dans le site

Table des matières de ce fascicule | Article précédent | Article suivant
Élie Mosaki
Partitions sans petites parts (II)
Journal de théorie des nombres de Bordeaux, 20 no. 2 (2008), p. 431-464, doi: 10.5802/jtnb.636
Article PDF | Analyses MR 2477513 | Zbl pre05543171

Résumé - Abstract

On désigne par $r(n,m)$ le nombre de partitions de l’entier $n$ en parts supérieures ou égales à $m$, et $R(n,m)= r(n-m,m)$ le nombre de partitions de $n$ de plus petite part $m$. Dans un précédent article (voir [9]) un développement asymptotique de $r(n,m)$ est obtenu uniformément pour $1\le m=O(\sqrt{n})$ ; on complète ce développement uniformément pour $1\le m=(n\log ^{-3}n)$. Afin de prolonger les résultats jusqu’à $m\le n$, on donne un encadrement de $r(n,m)$ valable pour $n^{2/3}\le m\le n$ en utilisant la relation $r(n,m)=\sum _{t=1}^{\lfloor n/m\rfloor }P(n-(m-1)t,t)$ où $P(i,t)$ désigne le nombre de partitions de $i$ en exactement $t$ parts. On donne aussi une preuve combinatoire élémentaire de la décroissance en $m$, $m\le n-1$, de $R(n,m)$.

Bibliographie

[1] N. Bourbaki, Fonctions d’une variable réelle. (Théorie élémentaire). Hermann et Cie., Paris, 1951.
[2] L. Comtet, Analyse combinatoire. Tomes I, II. Presses Universitaires de France, Paris, 1970.  MR 262087 |  Zbl 0221.05002
[3] J. Dixmier, J.L. Nicolas, Partitions sans petits sommants. A tribute to Paul Erdős, 121–152. Cambridge Univ. Press, Cambridge, 1990.  MR 1117009 |  Zbl 0719.11067
[4] J. Dixmier, J.L. Nicolas, Partitions without small parts. Number theory, Vol. I (Budapest, 1987), 9–33, North-Holland, Amsterdam, 1990.  MR 1058207 |  Zbl 0707.11072
[5] P. Erdős, J.L. Nicolas, M. Szalay, Partitions into parts which are unequal and large. Number theory (Ulm, 1987), Lecture Notes in Math., volume 1380, 19–30, Springer, New York, 1989.  MR 1009791 |  Zbl 0679.10013
[6] G. Freiman, J. Pitman, Partitions into distinct large parts. J. Austral. Math. Soc. Ser. A 57(3) (1994), 386–416.  MR 1297011 |  Zbl 0824.11064
[7] G. H. Hardy, Orders of infinity. The Infinitärcalcül of Paul du Bois-Reymond. Hafner Publishing Co., New York, 1971.  MR 349922 |  JFM 41.0303.01
[8] É. Mosaki, Partitions sans petits sommants. Thèse de l’Université Lyon 1 .
[9] É. Mosaki, J.-L. Nicolas, A. Sárközy, Partitions sans petites parts. J. de Théorie des Nombres de Bordeaux 16 (2004), 607–638. Cedram |  MR 2144961 |  Zbl 1080.11075
[10] J.-L. Nicolas, A. Sárközy, On partitions without small parts. J. de Théorie des Nombres de Bordeaux 12 (2000), 227–254. Cedram |  MR 1827850 |  Zbl 1005.11049
[11] G. Szekeres, An asymptotic formula in the theory of partitions. Quart. J. Math., Oxford 2 (1951), 85–108.  MR 43129 |  Zbl 0042.04102
[12] G. Szekeres, Some asymptotic formulae in the theory of partitions. II. Quart. J. Math., Oxford 4 (1953), 96–111.  MR 57279 |  Zbl 0050.04101