staple
Avec cedram.org

Rechercher dans le site

Table des matières de ce fascicule | Article précédent | Article suivant
Michael Stoll
Rational points on curves
Journal de théorie des nombres de Bordeaux, 23 no. 1 (2011), p. 257-277, doi: 10.5802/jtnb.760
Article PDF | Analyses MR 2780629 | Zbl 1270.11030
Class. Math.: 11D41, 11G30, 14G05, 14G25

Résumé - Abstract

Ceci est la version longue de l’exposé invité que j’ai donné aux Journées Arithmétiques de St. Étienne en juillet 2009.

Nous discutons l’état de l’art pour le problème de trouver l’ensemble des points rationnels sur $\mathbb{Q}$ d’une courbe $C$ (projective lisse) géométriquement intègre. Nous nous concentrons sur les aspects pratiques de ce problème dans le cas où le genre de $C$ est au moins $2$, et par conséquent l’ensemble des points rationnels est fini.

Bibliographie

[1] M.J. Bright, N. Bruin, E.V. Flynn, A. Logan, The Brauer-Manin obstruction and $\Sha[2]$, LMS J. Comput. Math. 10 (2007), 354–377.  MR 2342713
[2] N. Bruin, Chabauty methods and covering techniques applied to generalized Fermat equations, CWI Tract 133, 77 pages (2002).  MR 1916903 |  Zbl 1043.11029
[3] N. Bruin, Chabauty methods using elliptic curves, J. Reine Angew. Math. 562 (2003), 27–49.  MR 2011330 |  Zbl 1135.11320
[4] N. Bruin, N.D. Elkies, Trinomials $ax^7+bx+c$ and $ax^8+bx+c$ with Galois groups of order $168$ and $8\cdot 168$, in: Algorithmic number theory, Sydney 2002, Lecture Notes in Comput. Sci. 2369, Springer, Berlin (2002), pp. 172–188.  MR 2041082 |  Zbl 1058.11044
[5] N. Bruin, E.V. Flynn, Towers of 2-covers of hyperelliptic curves, Trans. Amer. Math. Soc. 357 (2005), 4329–4347.  MR 2156713 |  Zbl 1145.11317
[6] N. Bruin, E.V. Flynn, Exhibiting SHA$[2]$ on hyperelliptic Jacobians, J. Number Theory 118 (2006), 266–291.  MR 2225283 |  Zbl 1118.14035
[7] N. Bruin, M. Stoll, Deciding existence of rational points on curves: an experiment, Experiment. Math. 17 (2008), 181–189. Article |  MR 2433884 |  Zbl pre05383586
[8] N. Bruin, M. Stoll, 2-cover descent on hyperelliptic curves, Math. Comp. 78 (2009), 2347–2370.  MR 2521292 |  Zbl pre05813148
[9] N. Bruin, M. Stoll, The Mordell-Weil sieve: Proving non-existence of rational points on curves, LMS J. Comput. Math. 13 (2010), 272–306.  MR 2685127
[10] Y. Bugeaud, M. Mignotte, S. Siksek, M. Stoll, Sz. Tengely, Integral points on hyperelliptic curves, Algebra Number Theory 2 (2008), 859–885.  MR 2457355 |  Zbl 1168.11026
[11] J.W.S. Cassels, Second descents for elliptic curves, J. reine angew. Math. 494 (1998), 101–127.  MR 1604468 |  Zbl 0883.11028
[12] J.W.S. Cassels, E.V. Flynn, Prolegomena to a middlebrow arithmetic of curves of genus 2, London Math. Soc., Lecture Note Series 230, Cambridge Univ. Press, Cambridge, 1996.  MR 1406090 |  Zbl 0857.14018
[13] C. Chabauty, Sur les points rationnels des courbes algébriques de genre supérieur à l’unité, C. R. Acad. Sci. Paris 212 (1941), 882–885.  MR 4484 |  JFM 67.0105.01
[14] C. Chevalley, A. Weil, Un théorème d’arithmétique sur les courbes algébriques, Comptes Rendus Hebdomadaires des Séances de l’Acad. des Sci., Paris 195 (1932), 570–572.  Zbl 0005.21611
[15] R.F. Coleman, Effective Chabauty, Duke Math. J. 52 (1985), 765–770. Article |  MR 808103 |  Zbl 0588.14015
[16] J.E. Cremona, T.A. Fisher, C. O’Neil, D. Simon, M. Stoll, Explicit $n$-descent on elliptic curves. I. Algebra, J. reine angew. Math. 615 (2008), 121–155. II. Geometry, J. reine angew. Math. 632 (2009), 63–84. III. Algorithms, in preparation.  MR 2384334 |  Zbl pre05598019
[17] J.E. Cremona, T.A. Fisher, M. Stoll, Minimisation and reduction of 2-, 3- and 4-coverings of elliptic curves, Algebra Number Theory 4 (2010), 763–820.  MR 2728489 |  Zbl pre05809198
[18] B. Creutz, Explicit second $p$-descent on elliptic curves, PhD Thesis, Jacobs University Bremen, 2010.
[19] V.A. Dem’janenko, Rational points of a class of algebraic curves (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 30 (1966), 1373–1396.  MR 205991 |  Zbl 0181.24001
[20] T. Dokchitser, Computing special values of motivic $L$-functions, Experiment. Math. 13 (2004), 137–149. Article |  MR 2068888 |  Zbl 1139.11317
[21] G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), 349–366.  MR 718935 |  Zbl 0588.14026
[22] E.V. Flynn, An explicit theory of heights, Trans. Amer. Math. Soc. 347 (1995), 3003–3015.  MR 1297525 |  Zbl 0864.11033
[23] E.V. Flynn, A flexible method for applying Chabauty’s theorem, Compositio Math. 105 (1997), 79–94.  MR 1436746 |  Zbl 0882.14009
[24] E.V. Flynn, The Hasse Principle and the Brauer-Manin obstruction for curves, Manuscripta Math. 115 (2004), 437–466.  MR 2103661 |  Zbl 1069.11023
[25] E.V. Flynn, Homogeneous spaces and degree 4 del Pezzo surfaces, Manuscripta Math. 129 (2009), 369–380.  MR 2515488 |  Zbl 1184.11021
[26] E.V. Flynn, B. Poonen, E.F. Schaefer, Cycles of quadratic polynomials and rational points on a genus-2 curve, Duke Math. J. 90 (1997), 435–463. Article |  MR 1480542 |  Zbl 0958.11024
[27] E.V. Flynn, N.P. Smart, Canonical heights on the Jacobians of curves of genus $2$ and the infinite descent, Acta Arith. 79 (1997), 333–352. Article |  MR 1450916 |  Zbl 0895.11026
[28] M. Girard, L. Kulesz, Computation of sets of rational points of genus-3 curves via the Dem’janenko-Manin method, LMS J. Comput. Math. 8 (2005), 267–300.  MR 2193214 |  Zbl 1108.14017
[29] Su-Ion Ih, Height uniformity for algebraic points on curves, Compositio Math. 134 (2002), 35–57.  MR 1931961 |  Zbl 1031.11041
[30] V.A. Kolyvagin, Finiteness of $E(\mathbb{Q})$ and $\Sha(E,\mathbb{Q})$ for a subclass of Weil curves, Izv. Akad. Nauk SSSR Ser. Mat., Vol. 52 (1988), 522–540.  MR 954295 |  Zbl 0662.14017
[31] A.K. Lenstra, H.W. Lenstra, Jr., L. Lovász, Factoring polynomials with rational coefficients, Math. Ann. 261 (1982), 515–534.  MR 682664 |  Zbl 0488.12001
[32] A. Logan, R. van Luijk, Nontrivial elements of Sha explained through K3 surfaces, Math. Comp. 78 (2009), 441–483.  MR 2448716 |  Zbl pre05813054
[33] Y. Manin, The $p$-torsion of elliptic curves is uniformly bounded (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969), 459–465.  MR 272786 |  Zbl 0191.19601
[34] J.R. Merriman, S. Siksek, N.P. Smart, Explicit $4$-descents on an elliptic curve, Acta Arith. 77 (1996), 385–404. Article |  MR 1414518 |  Zbl 0873.11036
[35] L.J. Mordell, On the rational solutions of the indeterminate equations of the 3rd and 4th degrees, Proc. Camb. Phil. Soc. 21 (1922), 179–192.  JFM 48.1156.03
[36] B. Poonen, Heuristics for the Brauer-Manin obstruction for curves, Experiment. Math. 15 (2006), 415–420. Article |  MR 2293593 |  Zbl 1173.11040
[37] B. Poonen, E.F. Schaefer, Explicit descent for Jacobians of cyclic covers of the projective line, J. reine angew. Math. 488 (1997), 141–188.  MR 1465369 |  Zbl 0888.11023
[38] B. Poonen, E.F. Schaefer, M. Stoll, Twists of $X(7)$ and primitive solutions to $x^2+y^3=z^7$, Duke Math. J. 137 (2007), 103–158. Article |  MR 2309145 |  Zbl 1124.11019
[39] B. Poonen, M. Stoll, A local-global principle for densities, in: Scott D. Ahlgren (ed.) et al.: Topics in number theory. In honor of B. Gordon and S. Chowla. Kluwer Academic Publishers, Dordrecht. Math. Appl., Dordr. 467 (1999), 241–244.  MR 1691323 |  Zbl 1024.11047
[40] E.F. Schaefer, Computing a Selmer group of a Jacobian using functions on the curve, Math. Ann. 310 (1998), 447–471.  MR 1612262 |  Zbl 0889.11021
[41] V. Scharaschkin, Local-global problems and the Brauer-Manin obstruction, Ph.D. thesis, University of Michigan (1999).  MR 2700328
[42] J.-P. Serre, Algebraic groups and class fields, Springer GTM 117, Springer Verlag, 1988.  MR 918564 |  Zbl 0703.14001
[43] J.-P. Serre, Lectures on the Mordell-Weil theorem. Translated from the French and edited by Martin Brown from notes by Michel Waldschmidt. Aspects of Mathematics, E15. Friedr. Vieweg & Sohn, Braunschweig, 1989.  MR 1002324 |  Zbl 0676.14005
[44] S. Siksek, M. Stoll, On a problem of Hajdu and Tengely, in: G. Hanrot, F. Morain, and E. Thomé (Eds.): ANTS-IX 2010, LNCS 6197, pp. 316–330. Springer Verlag, Heidelberg, 2010.  Zbl pre05793688
[45] D. Simon, Solving quadratic equations using reduced unimodular quadratic forms, Math. Comp. 74 (2005), 1531–1543.  MR 2137016 |  Zbl 1078.11072
[46] S. Stamminger, Explicit 8-descent on elliptic curves, PhD thesis, International University Bremen (2005).
[47] M. Stoll, On the height constant for curves of genus two, Acta Arith. 90 (1999), 183–201. Article |  MR 1709054 |  Zbl 0932.11043
[48] M. Stoll, Implementing 2-descent on Jacobians of hyperelliptic curves, Acta Arith. 98 (2001), 245–277.  MR 1829626 |  Zbl 0972.11058
[49] M. Stoll, On the height constant for curves of genus two, II, Acta Arith. 104 (2002), 165–182.  MR 1914251 |  Zbl 1139.11318
[50] M. Stoll, Descent on Elliptic Curves. Short Course taught at IHP in Paris, October 2004. arXiv:math/0611694v1 [math.NT].
[51] M. Stoll, Independence of rational points on twists of a given curve, Compositio Math. 142 (2006), 1201–1214.  MR 2264661 |  Zbl 1128.11033
[52] M. Stoll, Finite descent obstructions and rational points on curves, Algebra Number Theory 1 (2007), 349–391.  MR 2368954 |  Zbl 1167.11024
[53] M. Stoll, Rational 6-cycles under iteration of quadratic polynomials, LMS J. Comput. Math. 11 (2008), 367–380.  MR 2465796
[54] M. Stoll, On the average number of rational points on curves of genus 2, Preprint (2009), arXiv:0902.4165v1 [math.NT].
[55] M. Stoll, Documentation for the ratpoints program, Manuscript (2009), arXiv:0803.3165 [math.NT].
[56] A. Weil, L’arithmétique sur les courbes algébriques, Acta Math. 52 (1929), 281–315.  MR 1555278 |  JFM 55.0713.01
[57] J.L. Wetherell, Bounding the number of rational points on certain curves of high rank, Ph.D. thesis, University of California (1997).  MR 2696280