staple
Avec cedram.org

Rechercher dans le site

Table des matières de ce fascicule | Article précédent | Article suivant
Yıldırım Akbal; Ahmet M. Güloğlu
Waring–Goldbach Problem with Piatetski-Shapiro Primes
Journal de théorie des nombres de Bordeaux, 30 no. 2 (2018), p. 449-467, doi: 10.5802/jtnb.1033
Article PDF
Class. Math.: 11P32, 11P05, 11P55, 11L03, 11L07, 11L15, 11L20, 11B83
Mots clés: Waring–Goldbach Problem, Piatetski-Shapiro Primes, Circle Method, Weyl Sums, Exponential Sums, van der Corput’s Method, Vinogradov’s Mean value theorem

Résumé - Abstract

Dans cet article nous donnons une formule asymptotique pour le nombre de représentations d’un grand entier comme somme de puissances identiques des nombres premiers de Piatetski-Shapiro, établissant donc une variante du problème de Waring–Goldbach pour des suites clairsemées de nombres premiers.

Bibliographie

[1] Yıldırım Akbal & Ahmet M. Güloğlu, Piatetski-Shapiro meets Chebotarev, Acta Arith. 167 (2015), p. 301-325
[2] Yıldırım Akbal & Ahmet M. Güloğlu, Waring’s Problem with Piatetski Shapiro Numbers, Mathematika 62 (2016), p. 524-550
[3] Jean Bourgain, On the Vinogradov mean value, Proc. Steklov Inst. Math. 296 (2017), p. 30-40 Article
[4] Jean Bourgain, Ciprian Demeter & Larry Guth, Proof of the main conjecture in Vinogradov’s mean value theorem for degrees higher than three, Ann. Math. 184 (2016), p. 633-682
[5] Sidney W. Graham & Grigori Kolesnik, van der Corput’s method of exponential sums, London Mathematical Society Lecture Note Series 126, Cambridge University Press, 1991
[6] D. Roger Heath-Brown, A new $k$th derivative estimate for exponential sums via Vinogradov?s mean value, Proc. Steklov Inst. Math. 296 (2017), p. 88-103 Article
[7] Loo-Keng Hua, Additive theory of prime numbers, Translations of Mathematical Monographs 13, American Mathematical Society, 1965
[8] Henryk Iwaniec & Emmanuel Kowalski, Analytic number theory, Colloquium Publications 53, American Mathematical Society, 2004
[9] Angel V. Kumchev, On the Piatetski-Shapiro-Vinogradov theorem, J. Théor. Nombres Bordx. 9 (1997), p. 11-23
[10] Angel V. Kumchev & Trevor D. Wooley, On the Waring-Goldbach problem for eighth and higher powers, J. Lond. Math. Soc. 93 (2016), p. 811-824
[11] Angel V. Kumchev & Trevor D. Wooley, On the Waring-Goldbach problem for seventh and higher powers, Monatsh. Math. 183 (2017), p. 303-310
[12] Ilya I. Piatetski-Shapiro, On the distribution of prime numbers in sequences of the form $[f(n)]$, Mat. Sb., N. Ser. 33 (1953), p. 559-566
[13] Robert C. Vaughan, The Hardy-Littlewood method, Cambridge Tracts in Mathematics 125, Cambridge University Press, 1997
[14] Trevor D. Wooley, The asymptotic formula in Waring’s problem, Int. Math. Res. Not. 2012 (2012), p. 1485-1504
[15] Deyu Zhang & Wenguang Zhai, The Waring-Goldbach problem in thin sets of primes. II, Acta Math. 48 (2005), p. 809-816