staple
With cedram.org

Search the site

Table of contents for this issue | Previous article | Next article
Bruno Parvaix
Substitution invariant sturmian bisequences
Journal de théorie des nombres de Bordeaux, 11 no. 1 (1999), p. 201-210, doi: 10.5802/jtnb.246
Article PDF | Reviews MR 1730440 | Zbl 0978.11005 | 1 citation in Cedram

Résumé - Abstract

We prove that a Sturmian bisequence, with slope $\alpha $ and intercept $\rho $, is fixed by some non-trivial substitution if and only if $\alpha $ is a Sturm number and $\rho $ belongs to $\mathbb{Q}(\alpha )$. We also detail a complementary system of integers connected with Beatty bisequences.

Bibliography

[1] T. Bang, On the sequence [nα], Math. Scand. 5 (1957), 69-76.  Zbl 0084.04401
[2] S. Beatty, Problem 3173, Amer. Math. Monthly 33 (1926) 159. Solutions, ibid., 34 (1927) 159.  JFM 53.0198.06
[3] J. Berstel, Recent results on Sturmian words, in: J. Dassow (Ed.), Proc. DLT'95, World Scientific, Singapore (1996).  MR 1466181 |  Zbl 1096.68689
[4] J. Berstel and P. Séébold, A characterization of Sturmian morphisms, Lect. Notes Comp. Sci. 711 (1993), 281-290.  MR 1265070 |  Zbl 0925.11026
[5] J. Berstel et P. Séébold, Morphismes de Sturm, Bull. Belg. Math. Soc. 1 (1994), 175-189. Article |  MR 1318967 |  Zbl 0803.68095
[6] J.M. Borwein and P.B. Borwein, On the generating function of the integer part [nα + γ], J. Number Theory 43 (1993), 293-318.  Zbl 0778.11039
[7] D. Bowman, Approximation of [nα + s and the zero of {nα + s}, J. Number Theory 50 (1995), 128-144.  Zbl 0823.11037
[8] T.C. Brown, Descriptions of the characteristic sequence of an irrational, Canad. Math. Bull. 36 (1993), 15-21.  MR 1205889 |  Zbl 0804.11021
[9] I.G. Connell, Some properties of Beatty sequences I, Canad. Math. Bull. 2 (1959), 190-197.  MR 109093 |  Zbl 0092.27801
[10] I.G. Connell, Some properties of Beatty sequences II, Canad. Math. Bull. 3 (1960), 17-22.  MR 110683 |  Zbl 0090.03203
[11] E. Coven and G.A. Hedlund, Sequences with minimal block growth, Math. Systems Theory 7 (1973), 138-153.  MR 322838 |  Zbl 0256.54028
[12] D. Crisp, W. Moran, A. Pollington and P. Shiue, Substitution invariant cutting sequences, J. Théorie des Nombres de Bordeaux 5 (1993), 123-137. Cedram |  MR 1251232 |  Zbl 0786.11041
[13] A.S. Fraenkel, Complementary systems of integers, Amer. Math. Monthly 84 (1977), 114-115.  MR 429815 |  Zbl 0359.10048
[14] A.S. Fraenkel, J. Levitt and M. Shimshoni, Characterization of the set of values f(n) = [nα], Discrete Math. 2 (1972), 335-345.  Zbl 0246.10005
[15] A.S. Fraenkel, M. Mushkin and U. Tassa, Determination of nθby its sequence of differences, Canad. Math. Bull. 21 (1978), 441-446.  Zbl 0401.10018
[16] A.S. Fraenkel and R. Holzman, Gap problems for integer part and fractional part sequences, J. Number Theory 50 (1995), 66-86.  MR 1310736 |  Zbl 0822.11021
[17] R.L. Graham, Covering the positive integers by disjoint sets of the form {nα + β]: n = 1, 2, ... }, J. Comb. Theor. Ser. A 15 (1973), 354-358.  Zbl 0279.10042
[18] S. Ito, On a dynamical system related to sequences nx + y - L(n - 1)x + y], Dynamical Systems and Related Topics, Nagoya (1990), 192-197.  MR 1164888
[19] S. Ito and S. Yasutomi, On continued fractions, substitutions and characteristic sequences, Japan. J. Math. 16 (1990), 287-306.  MR 1091163 |  Zbl 0721.11009
[20] T. Komatsu, On the characteristic word of the inhomogeneous Beatty sequence, Bull. Aust. Math. Soc. 51 (1995), 337-351.  MR 1322798 |  Zbl 0829.11012
[21] T. Komatsu, The fractional part of nθ + ϕ and Beatty sequences, J. Théorie des Nombres de Bordeaux 7 (1995), 387-406. Cedram |  Zbl 0849.11027
[22] T. Komatsu, A certain power series associated with a Beatty sequence, Acta Arith. LXXVI (1996),109-129. Article |  MR 1393509 |  Zbl 0858.11013
[23] T. Komatsu and A. J. van der Poorten, Substitution invariant Beatty sequences, Japan. J. Math. 22 (1996), 349-354.  MR 1432380 |  Zbl 0868.11015
[24] F. Mignosi et P. Séébold, Morphismes sturmiens et règles de Rauzy, J. Théorie des Nombres de Bordeaux 5 (1993), 221-233. Cedram |  MR 1265903 |  Zbl 0797.11029
[25] M. Morse and G.A. Hedlund, Symbolic Dynamics, Amer. J. Math. 60 (1938), 815-866.  MR 1507944 |  Zbl 0019.33502 |  JFM 64.0798.04
[26] M. Morse and G.A. Hedlund, Symbolic Dynamics II. Sturmian trajectories, Amer. J. Math. 62 (1940), 1-42.  MR 745 |  Zbl 0022.34003 |  JFM 66.0188.03
[27] B. Parvaix, Propriétés d'invariance des mots sturmiens, J. Théorie des Nombres de Bordeaux 9 (1997), 351-369. Cedram |  MR 1617403 |  Zbl 0904.11008
[28] J. Rosenblatt, The sequence of greatest integers of an arithmetic progression, J. Lond. Math. Soc. 17 (1978), 213-218.  MR 480409 |  Zbl 0383.10036
[29] K.B. Stolarsky, Beatty sequences, continued fractions and certain shift operators, Canad. Math. Bull. 19 (1976), 473-482.  MR 444558 |  Zbl 0359.10028
[30] R. Tijdeman, On disjoint pairs of Sturmian bisequences, Mathematical Institute, Leiden University, Report W96-02 (1996).
[31] R. Tijdeman, On complementary triples of Sturmian bisequences, Indag. Math. 7 (1996), 419-424.  MR 1621393 |  Zbl 0862.68085