staple
With cedram.org

Search the site

Table of contents for this issue | Previous article | Next article
Jean-François Burnol
Two complete and minimal systems associated with the zeros of the Riemann zeta function
Journal de théorie des nombres de Bordeaux, 16 no. 1 (2004), p. 65-94, doi: 10.5802/jtnb.434
Article PDF | Reviews MR 2145573 | Zbl 02184632 | 1 citation in Cedram
Keywords: Riemann zeta function; Hilbert spaces; Fourier Transform

Résumé - Abstract

We link together three themes which had remained separated so far: the Hilbert space properties of the Riemann zeros, the “dual Poisson formula” of Duffin-Weinberger (also named by us co-Poisson formula), and the “Sonine spaces” of entire functions defined and studied by de Branges. We determine in which (extended) Sonine spaces the zeros define a complete, or minimal, system. We obtain some general results dealing with the distribution of the zeros of the de-Branges-Sonine entire functions. We draw attention onto some distributions associated with the Fourier transform and which we introduced in our earlier works.

Bibliography

[1] R. P. Boas, Sums representing Fourier transforms, Proc. Am. Math. Soc. 3 (1952), 444–447.  MR 48626 |  Zbl 0047.10401
[2] L. de Branges, Self-reciprocal functions, J. Math. Anal. Appl. 9 (1964) 433–457.  MR 213826 |  Zbl 0134.10504
[3] L. de Branges, Hilbert spaces of entire functions, Prentice Hall Inc., Englewood Cliffs, 1968.  MR 229011 |  Zbl 0157.43301
[4] L. de Branges, The convergence of Euler products, J. Funct. Anal. 107 (1992), no. 1, 122–210.  MR 1165869 |  Zbl 0768.46009
[5] L. de Branges, A conjecture which implies the Riemann hypothesis, J. Funct. Anal. 121 (1994), no. 1, 117–184.  MR 1270590 |  Zbl 0802.46039
[6] J.-F. Burnol, Sur certains espaces de Hilbert de fonctions entières, liés à la transformation de Fourier et aux fonctions L de Dirichlet et de Riemann, C. R. Acad. Sci. Paris, Ser. I 333 (2001), 201–206.  MR 1851625 |  Zbl 1057.11039
[7] J.-F. Burnol, On Fourier and Zeta(s), 50 p., Habilitationsschrift (2001-2002), Forum Mathematicum, to appear (2004).  MR 2096473 |  Zbl 1077.11058
[8] J.-F. Burnol, Sur les “espaces de Sonine” associés par de Branges à la transformation de Fourier, C. R. Acad. Sci. Paris, Ser. I 335 (2002), 689–692.  MR 1941650 |  Zbl 1032.46054
[9] J.-F. Burnol, Des équations de Dirac et de Schrödinger pour la transformation de Fourier, C. R. Acad. Sci. Paris, Ser. I 336 (2003), 919–924.  MR 1994595 |  Zbl 1083.34063
[10] R. J. Duffin, Representation of Fourier integrals as sums I, Bull. Am. Math. Soc. 51 (1945), 447–455. Article |  MR 12153 |  Zbl 0060.25606
[11] R. J. Duffin, Representation of Fourier integrals as sums II, Proc. Am. Math. Soc. 1 (1950), 250–255.  MR 34465 |  Zbl 0037.19802
[12] R. J. Duffin, Representation of Fourier integrals as sums III, Proc. Am. Math. Soc. 8 (1957), 272–277.  MR 84629 |  Zbl 0078.09804
[13] R. J. Duffin, H. F. Weinberger, Dualizing the Poisson summation formula, Proc. Natl. Acad. Sci. USA 88 (1991), 7348–7350.  MR 1119734 |  Zbl 0771.42001
[14] R. J. Duffin, H. F. Weinberger, On dualizing a multivariable Poisson summation formula, Journ. of Fourier Anal. and Appl. 3 (5) (1997), 487–497.  MR 1491929 |  Zbl 0892.42002
[15] H. Dym, H.P. McKean, Fourier series and integrals, Academic Press, 1972.  MR 442564 |  Zbl 0242.42001
[16] H. Dym, H.P. McKean, Gaussian processes, function theory, and the inverse spectral problem, Probability and Mathematical Statistics, Vol. 31. Academic Press, New York-London, 1976.  MR 448523 |  Zbl 0327.60029
[17] M. L. Gorbachuk, V. I. Gorbachuk, M. G. Krein’s lectures on entire operators, Operator Theory: Advances and Applications, 97. Birkhäuser Verlag, Basel, 1997.  Zbl 0883.47008
[18] K. Hoffman, Banach spaces of analytic functions, Reprint of the 1962 original. Dover Publications, Inc., New York, 1988.  MR 1102893 |  Zbl 0734.46033
[19] M.G. Krein, Theory of entire functions of exponential type (in Russian), Izv. Akad. Nauk. SSSR, Ser. Mat. 11 (1947), No. 4, 309–326.  MR 22252 |  Zbl 0033.36501
[20] B.Y. Levin, Distribution of Zeros of Entire Functions, American Mathematical Society, Providence 1980. Transl. and rev. from the 1956 Russian and 1962 German editions.  MR 589888 |  Zbl 0152.06703
[21] R.E.A.C. Paley, N. Wiener, Fourier Transforms in the Complex Domain, Amer. Math. Soc., Providence, Rhode Island, 1934.  MR 1451142 |  Zbl 0011.01601
[22] J. Rovnyak, V. Rovnyak, Sonine spaces of entire functions, J. Math. Anal. Appl., 27 (1969), 68–100.  MR 243333 |  Zbl 0159.17303
[23] N. Sonine, Recherches sur les fonctions cylindriques et le développement des fonctions continues en séries, Math. Ann. 16 (1880), 1–80. Article |  MR 1510013 |  JFM 12.0400.01
[24] E. C. Titchmarsh, The Theory of the Riemann-Zeta Function, 2nd ed. Edited and with a preface by D. R. Heath-Brown. Clarendon Press, Oxford 1986.  MR 882550 |  Zbl 0601.10026
[25] H. F. Weinberger, Fourier transforms of Moebius series. Dissertation (1950), Carnegie-Mellon University, Pittsburgh.