staple
With cedram.org

Search the site

Table of contents for this issue | Previous article | Next article
William Duke; Özlem Imamoḡlu
Special values of multiple gamma functions
Journal de théorie des nombres de Bordeaux, 18 no. 1 (2006), p. 113-123, doi: 10.5802/jtnb.536
Article PDF | Reviews MR 2245878 | Zbl 05070450

Résumé - Abstract

We give a Chowla-Selberg type formula that connects a generalization of the eta-function to $\operatorname{GL}(n)$ with multiple gamma functions. We also present some simple infinite product identities for certain special values of the multiple gamma function.

Bibliography

[1] V. Adamchik, Multiple Gamma Function and Its Application to Computation of Series. Ramanujan Journal 9 (2005), 271–288.  MR 2173489 |  Zbl 1088.33014
[2] E. W. Barnes, On the theory of the multiple Gamma function. Cambr. Trans. 19 (1904), 374–425.  JFM 35.0462.01
[3] J. Elstrodt, F. Grunewald, J. Mennicke, Groups acting on hyperbolic space. Harmonic analysis and number theory. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 1998.  MR 1483315 |  Zbl 0888.11001
[4] P. Epstein, Zur Theorie allgemeiner Zetafunktionen. Math. Ann. 56 (1903), 615–644. Article |  MR 1511190 |  JFM 34.0461.02
[5] E. Hecke, Analytische Arithmetik der positive quadratischen Formen, (1940) # 41 in Mathematische Werke.  MR 3665 |  Zbl 0024.00902 |  JFM 66.0128.01
[6] M.J. Liouville, Journal de Mathématiques Pure et Appliquées.
[7] S. Minakshisundaram, Å. Pleijel, Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds. Canadian J. Math. 1 (1949), 242–256.  MR 31145 |  Zbl 0041.42701
[8] J. Dufresnoy, Ch. Pisot, Sur la relation fonctionnelle $f(x+1)-f(x)=\varphi (x)$. Bull. Soc. Math. Belg. 15 (1963), 259–270.  MR 161055 |  Zbl 0122.09802
[9] P. Sarnak, Determinants of Laplacians; heights and finiteness. Analysis, et cetera, 601–622, Academic Press, Boston, MA, 1990.  MR 1039364 |  Zbl 0703.53037
[10] S. Selberg, S. Chowla, On Epstein’s zeta-function. J. Reine Angew. Math. 227 (1967), 86–110.  MR 215797 |  Zbl 0166.05204
[11] T. Shintani, On special values of zeta functions of totally real algebraic number fields. Proceedings of the International Congress of Mathematicians (Helsinki, 1978), pp. 591–597, Acad. Sci. Fennica, Helsinki, 1980.  MR 562660 |  Zbl 0426.12008
[12] C. L. Siegel, Über die analytische Theorie der quadratischen Formen. Ann. of Math. (2) 36 (1935), no. 3, 527–606. [in Gesammelte Abhandlungen]  MR 1503238 |  Zbl 0012.19703 |  JFM 61.0140.01
[13] C. L. Siegel, Lectures on advanced analytic number theory. Notes by S. Raghavan. Tata Institute of Fundamental Research Lectures on Mathematics, No. 23 Tata Institute of Fundamental Research, Bombay 1965.  MR 262150 |  Zbl 0278.10001
[14] H. M. Srivastava, J. Choi, Series associated with the zeta and related functions. Kluwer Academic Publishers, Dordrecht, 2001.  MR 1849375 |  Zbl 1014.33001
[15] A. Terras, Bessel series expansions of the Epstein zeta function and the functional equation. Trans. Amer. Math. Soc. 183 (1973), 477–486.  MR 323735 |  Zbl 0274.10039
[16] I. Vardi, Determinants of Laplacians and multiple gamma functions. SIAM J. Math. Anal. 19 (1988), no. 2, 493–507.  MR 930041 |  Zbl 0641.33003
[17] B. A. Venkov, Elementary number theory. Translated from the Russian and edited by Helen Alderson Wolters-Noordhoff Publishing, Groningen 1970.  MR 265267 |  Zbl 0204.37101
[18] M.-F. Vignéras, L’équation fonctionnelle de la fonction zêta de Selberg du groupe modulaire $\operatorname{PSL}(2,\,{\mathbb{Z}})$. Journées Arithmétiques de Luminy , 235–249, Astérisque 61 , Soc. Math. France, Paris, 1979.  MR 556676 |  Zbl 0401.10036