staple
With cedram.org

Search the site

Table of contents for this issue | Previous article | Next article
Nicolas Gouillon
Explicit lower bounds for linear forms in two logarithms
Journal de théorie des nombres de Bordeaux, 18 no. 1 (2006), p. 125-146, doi: 10.5802/jtnb.537
Article PDF | Reviews MR 2245879 | Zbl 05070451

Résumé - Abstract

We give an explicit lower bound for linear forms in two logarithms. For this we specialize the so-called Schneider method with multiplicity described in [10]. We substantially improve the numerical constants involved in existing statements for linear forms in two logarithms, obtained from Baker’s method or Schneider’s method with multiplicity. Our constant is around $5.10^{4}$ instead of $10^{8}$.

Bibliography

[1] Alan Baker, Transcendental number theory. Cambridge University Press, London, 1975.  MR 422171 |  Zbl 0297.10013
[2] Nicolas Gouillon, Un lemme de zéros. C. R. Math. Acad. Sci. Paris, 335 (2) (2002), 167–170.  MR 1920014 |  Zbl 1031.11046
[3] Nicolas Gouillon, Minorations explicites de formes linéaires en deux logarithmes. Thesis (2003) : http://tel.ccsd.cnrs.fr/documents/archives0/00/00/39/64/index_fr.html
[4] Michel Laurent, Linear forms in two logarithms and interpolation determinants. Acta Arith. 66 (2) (1994), 181–199. Article |  MR 1276987 |  Zbl 0801.11034
[5] Michel Laurent, Maurice Mignotte, Yuri Nesterenko, Formes linéaires en deux logarithmes et déterminants d’interpolation. J. Number Theory 55 (2) (1995), 285–321.  MR 1366574 |  Zbl 0843.11036
[6] D. W. Masser, On polynomials and exponential polynomials in several complex variables. Invent. Math. 63 (1) (1981), 81–95.  MR 608529 |  Zbl 0436.32005
[7] E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II. Izv. Ross. Akad. Nauk Ser. Mat. 64 (6) (2000), 125–180.  MR 1817252 |  Zbl 1013.11043
[8] Maurice Mignotte, Michel Waldschmidt, Linear forms in two logarithms and Schneider’s method. II. Acta Arith. 53 (3) (1989), 251–287.  MR 1032827 |  Zbl 0642.10034
[9] Michel Waldschmidt, Minorations de combinaisons linéaires de logarithmes de nombres algébriques. Canad. J. Math. 45 (1) (1993), 176–224.  MR 1200327 |  Zbl 0774.11036
[10] Michel Waldschmidt, Diophantine Approximation on Linear Algebraic Groups. Springer-Verlag, 1999.  MR 1756786 |  Zbl 0944.11024
[11] Kun Rui Yu, Linear forms in $p$-adic logarithms. Acta Arith. 53 (2) (1989), 107–186.  MR 1027200 |  Zbl 0699.10050