staple
With cedram.org

Search the site

Table of contents for this issue | Previous article | Next article
Federico Pellarin
La structure différentielle de l’anneau des formes quasi-modulaires pour ${\bf SL}_2({\bf Z})$
Journal de théorie des nombres de Bordeaux, 18 no. 1 (2006), p. 241-264, doi: 10.5802/jtnb.542
Article PDF | Reviews MR 2245884 | Zbl 05070456 | 1 citation in Cedram

Résumé - Abstract

In this text we explicitly compute all the prime ideals which are differentially stable in the ring of quasi-modular forms for ${\bf SL}_2({\mathbb{Z}})$. The techniques we introduce allow to refine some results by Nesterenko in [5] and [6].

Bibliography

[1] M. Kaneko & D. Zagier, A generalized Jacobi theta function and quasimodular forms. Dijkgraaf, R. H. (éd.) et al., The moduli space of curves, Prog. Math. 129, 165–172, Basel : Birkhäuser, 1995.  MR 1363056 |  Zbl 0892.11015
[2] S. Lang, Introduction to modular forms, (Avec deux appendices, par D. B. Zagier et par W. Feit). Grundlehren der mathematischen Wissenschaften 222, Springer, 1976.  MR 429740 |  Zbl 0344.10011
[3] Yu. V. Nesterenko, On the algebraic dependence of the components of solutions of a system of linear differential equations. Izv. Akad. Nauk SSSR, Ser. Mat. 38 (1974), 495–512.  MR 371870 |  Zbl 0308.35016
[4] Yu. V. Nesterenko, Modular functions and transcendence questions. Sb. Math. 187 (1996), No. 9, 1319–1348.  MR 1422383 |  Zbl 0898.11031
[5] Yu. V. Nesterenko, Algebraic independence for values of Ramanujan functions. Dans Introduction to algebraic independence theory. Yu. V. Nesterenko et P. Philippon éditeurs, chapitre 3, 27–43, Lecture Notes in Mathematics 1752, Springer, 2001.  MR 1837825 |  Zbl 1019.11020
[6] Yu. V. Nesterenko, Multiplicity estimates for solutions of algebraic differential equations. Dans Introduction to algebraic independence theory. Yu. V. Nesterenko et P. Philippon éditeurs, chapitre 10, 149–165, Lecture Notes in Mathematics 1752, Springer, 2001.  MR 1837832
[7] F. Pellarin, Les nilradicaux différentiels d’anneaux différentiels associés aux groupes triangulaires de Riemann-Schwarz. Rend. Sem. Mat. Univ. Padova 114 (2005), 213–239. Numdam |  MR 2207866
[8] F. Martin & E. Royer, Formes modulaires et périodes. Dans S.M.F. Séminaires et Congrès No. 12, (2005).  MR 2186573
[9] A. Seidenberg, Differential ideals in rings of finitely generated type. Am. J. Math. 89 (1967), 22–42.  MR 212027 |  Zbl 0152.02905
[10] AA. B. Shidlovskij, Transcendental numbers. De Gruyter Studies in Mathematics 12, W. de Gruyter, 1989.  MR 1033015 |  Zbl 0689.10043
[11] C. L. Siegel, Über einige Anwendungen diophantischer Approximationen. Abh. Preuss. Akad. Wiss. Dans Gesammelte Abhandlungen I, 210–266.  JFM 56.0180.05
[12] B. Sturmfels, On the Newton polytope of the resultant. J. Algebraic Combin. 3  : 2 (1994), 207–236.  MR 1268576 |  Zbl 0798.05074
[13] O. Zariski & P. Samuel, Commutative algebra. Vol. II. Réédition de l’édition Van Nostrand 1958–1960. Graduate Texts in Mathematics 29, Springer-Verlag.  MR 120249 |  Zbl 0081.26501