staple
With cedram.org

Search the site

Table of contents for this issue | Previous article | Next article
Paul M. Voutier
Rational approximations to ${\@root 3 \of {2}}$ and other algebraic numbers revisited
Journal de théorie des nombres de Bordeaux, 19 no. 1 (2007), p. 263-288, doi: 10.5802/jtnb.586
Article PDF | Reviews MR 2332066 | Zbl 1120.11027

Résumé - Abstract

In this paper, we establish improved effective irrationality measures for certain numbers of the form $\@root 3 \of {n}$, using approximations obtained from hypergeometric functions. These results are very close to the best possible using this method. We are able to obtain these results by determining very precise arithmetic information about the denominators of the coefficients of these hypergeometric functions.

Improved bounds for the Chebyshev functions in arithmetic progressions $\theta (k,l;x)$ and $\psi (k,l;x)$ for $k=1,3,4,6$ are also presented.

Bibliography

[1] A. Baker, Rational approximations to certain algebraic numbers. Proc. London. Math. Soc. (3) 14 (1964), 385–398.  MR 161825 |  Zbl 0131.29102
[2] A. Baker, Rational approximations to $\@root 3 \of {2}$ and other algebraic numbers. Quart. J. Math. Oxford 15 (1964), 375–383.  MR 171750 |  Zbl 0222.10036
[3] M. Bennett, Explicit lower bounds for rational approximation to algebraic numbers. Proc. London Math. Soc. 75 (1997), 63–78.  MR 1444313 |  Zbl 0879.11038
[4] Jianhua Chen, P. Voutier, Complete solution of the diophantine equation $X^{2}+1=dY^{4}$ and a related family of quartic Thue equations. J. Number Theory 62 (1997), 71–99.  MR 1430002 |  Zbl 0869.11025
[5] G. V. Chudnovsky, The method of Thue-Siegel. Annals of Math. 117 (1983), 325–383.  MR 690849 |  Zbl 0518.10038
[6] D. Easton, Effective irrationality measures for certain algebraic numbers. Math. Comp. 46 (1986), 613–622.  MR 829632 |  Zbl 0586.10019
[7] N. I. Fel’dman, Yu. V. Nesterenko, Number Theory IV: Transcendental Numbers. Encyclopaedia of Mathematical Sciences 44, Springer, 1998.  Zbl 0885.11004
[8] A. Heimonen, Effective irrationality measures for some values of Gauss hypergeometric function. Department of Mathematics, University of Oulu preprint, March 1996.
[9] A. N. Korobov, Continued fractions and Diophantine approximation. Candidate’s Dissertation, Moscow State University, 1990.
[10] S. Lang, H. Trotter, Continued-fractions for some algebraic numbers. J. reine angew. Math. 255 (1972), 112–134. Article |  MR 306131 |  Zbl 0237.10022
[11] G. Lettl, A. Pethő, P. M. Voutier, Simple Familiies of Thue Inequalities. Trans. Amer. Math. Soc. 351 (1999), 1871–1894.  MR 1487624 |  Zbl 0920.11041
[12] E. M. Nikishin, Arithmetic properties of the Markov function for the Jacobi weight. Anal. Math. 8 (1982), 39–46.  MR 662702 |  Zbl 0495.10022
[13] O. Ramaré, R. Rumely, Primes in arithmetic progressions. Math. Comp. 65 (1996), 397–425.  MR 1320898 |  Zbl 0856.11042
[14] M. Rubinstein, http://pmmac03.math.uwaterloo.ca/~mrubinst/L_function_public/ZEROS
[15] A. Togbe, P. M. Voutier, P. G. Walsh, Solving a family of Thue equations with an application to the equation $x^{2}-Dy^{4}=1$. Acta. Arith. 120 (2005), 39–58.  MR 2189717 |  Zbl 05001262