staple
With cedram.org

Search the site

Table of contents for this issue | Previous article | Next article
Nigel Boston
Galois groups of tamely ramified $ p$-extensions
Journal de théorie des nombres de Bordeaux, 19 no. 1 (2007), p. 59-70, doi: 10.5802/jtnb.573
Article PDF | Reviews MR 2332053 | Zbl 1123.11038 | 1 citation in Cedram

Résumé - Abstract

Very little is known regarding the Galois group of the maximal $p$-extension unramified outside a finite set of primes $S$ of a number field in the case that the primes above $p$ are not in $S$. We describe methods to compute this group when it is finite and conjectural properties of it when it is infinite.

Bibliography

[1] M.Abért, B.Virág, Dimension and randomness in groups acting on rooted trees. J. Amer. Math. Soc. 18 (2005), 157–192.  MR 2114819 |  Zbl 02125234
[2] W.Aitken, F.Hajir, C.Maire, Finitely ramified iterated extensions. Int. Math. Res. Not. 14 (2005), 855–880.  MR 2146860 |  Zbl 02188805
[3] Y.Barnea, M.Larsen, A non-abelian free pro-p group is not linear over a local field. J. Algebra 214 (1999), 338–341.  MR 1684856 |  Zbl 0923.20018
[4] Y.Barnea, A.Shalev, Hausdorff dimension, pro-$p$ groups, and Kac-Moody algebras. Trans. Amer. Math. Soc. 349 (1997), 5073–5091.  MR 1422889 |  Zbl 0892.20020
[5] L.Bartholdi, M.R.Bush, Maximal unramified $3$-extensions of imaginary quadratic fields and $SL_2(\mathbf{Z}_3)$. To appear in J. Number Theory.
[6] L.Bartholdi, B.Virág, Amenability via random walks. To appear in Duke Math. J.  MR 2176547 |  Zbl 1104.43002
[7] W.Bosma, J.Cannon, Handbook of MAGMA Functions. Sydney: School of Mathematics and Statistics, University of Sydney, 1993.
[8] N.Boston, Some Cases of the Fontaine-Mazur Conjecture II. J. Number Theory 75 (1999), 161–169.  MR 1681626 |  Zbl 0928.11050
[9] N.Boston, Reducing the Fontaine-Mazur conjecture to group theory. Progress in Galois theory (2005), 39–50.  MR 2148459 |  Zbl 02163150
[10] N.Boston, Embedding $2$-groups in groups generated by involutions. J. Algebra 300 (2006), 73–76.  MR 2228635 |  Zbl 1102.12002
[11] N.Boston, C.R.Leedham-Green, Explicit computation of Galois $p$-groups unramified at $p$. J. Algebra 256 (2002), 402–413.  MR 1939112 |  Zbl 1016.11051
[12] N.Boston, C.R.Leedham-Green, Counterexamples to a conjecture of Lemmermeyer. Arch. Math. Basel 72 (1999), 177–179.  MR 1671275 |  Zbl 0922.11095
[13] D.J.Broadhurst, On the enumeration of irreducible $k$-fold Euler sums and their roles in knot theory and field theory. J. Math. Phys. (to appear).
[14] M.R.Bush, Computation of Galois groups associated to the $2$-class towers of some quadratic fields. J. Number Theory 100 (2003), 313–325.  MR 1978459 |  Zbl 1039.11091
[15] H. Cohen, H. W. Lenstra, Jr., Heuristics on class groups. Lecture Notes in Math. 1086, Springer-Verlag, Berlin 1984.  MR 750661 |  Zbl 0532.12008
[16] H.Cohn, J.C.Lagarias, On the existence of fields governing the $2$-invariants of the classgroup of $\mathbf{Q}(\sqrt{dp})$ as $p$ varies. Math. Comp. 37 (1983), 711–730.  MR 717716 |  Zbl 0523.12002
[17] B.Eick, H.Koch, On maximal $2$-extensions of $\mathbf{Q}$ with given ramification. Proc. St. Petersburg Math. Soc. (Russian), American Math. Soc. Translations (English) (to appear).  MR 2276852
[18] J.-M.Fontaine, B.Mazur, Geometric Galois representations. Proceedings of a conference held in Hong Kong, December 18-21, 1993,” International Press, Cambridge, MA and Hong Kong.  Zbl 0839.14011
[19] J.Gilbey, Permutation groups, a related algebra and a conjecture of Cameron. Journal of Algebraic Combinatorics, 19 (2004) 25–45.  MR 2056765 |  Zbl 1080.20002
[20] E.S.Golod, I.R.Shafarevich, On class field towers (Russian). Izv. Akad. Nauk. SSSR 28 (1964), 261–272. English translation in AMS Trans. (2) 48, 91–102.  MR 161852 |  Zbl 0148.28101
[21] R.Grigorchuk, Just infinite branch groups. New Horizons in pro-$p$ Groups, Birkhauser, Boston 2000.  MR 1765119 |  Zbl 0982.20024
[22] R.Grigorchuk, A.Zuk, On a torsion-free weakly branch group defined by a three state automaton. Internat. J. Algebra Comput., 12 (2000), 223–246.  MR 1902367 |  Zbl 1070.20031
[23] F.Hajir, C.Maire, Tamely ramified towers and discriminant bounds for number fields. II. J. Symbolic Comput. 33 (2002), 415–423.  MR 1890578 |  Zbl 1086.11051
[24] G.Havas, M.F.Newman, E.A.O’Brien, Groups of deficiency zero. Geometric and Computational Perspectives on Infinite Groups, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 25 (1996) 53–67.  Zbl 0849.20019
[25] H.Kisilevsky, Number fields with class number congruent to $4 \hspace{4.44443pt}(\@mod \; 8)$ and Hilbert’s theorem $94$. J. Number Theory 8 (1976), no. 3, 271–279  Zbl 0334.12019
[26] H.Koch, Galois theory of $p$-extensions. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2002.  MR 1930372 |  Zbl 1023.11002
[27] H.Koch, B.Venkov, The $p$-tower of class fields for an imaginary quadratic field (Russian). Zap. Nau. Sem. Leningrad Otdel. Mat. Inst. Steklov (LOMI) 46 (1974), 5–13.  MR 382235 |  Zbl 0335.12022
[28] J.Labute, Mild pro-$p$-groups and Galois groups of $p$-extensions of $\mathbf{Q}$. J. Reine Angew. Math. (to appear).  MR 2254811 |  Zbl 05080511
[29] A.Lubotzky, Group presentations, $p$-adic analytic groups and lattices in $SL_2(\mathbf{C})$. Ann. Math. 118 (1983), 115–130.  MR 707163 |  Zbl 0541.20020
[30] J.Mennicke, Einige endliche Gruppe mit drei Erzeugenden und drei Relationen. Arch. Math. X (1959), 409–418.  MR 113946 |  Zbl 0089.01405
[31] E.A.O’Brien, The $p$-group generation algorithm. J. Symbolic Comput. 9 (1990), 677–698.  Zbl 0736.20001
[32] R.W.K.Odoni, Realising wreath products of cyclic groups as Galois groups. Mathematika 35 (1988), 101–113.  MR 962740 |  Zbl 0662.12010
[33] I.R.Shafarevich, Extensions with prescribed ramification points (Russian). IHES Publ. Math. 18 (1964), 71–95. Numdam |  MR 176979
[34] M.Stoll, Galois groups over $\mathbf{Q}$ of some iterated polynomials. Arch. Math. (Basel) 59 (1992), 239–244.  MR 1174401 |  Zbl 0758.11045
[35] G.Willis, Totally disconnected, nilpotent, locally compact groups. Bull. Austral. Math. Soc. 55 (1997), 143–146.  MR 1428537 |  Zbl 0893.22001
[36] E.Zelmanov, On groups satisfying the Golod-Shafarevich condition. New horizons in pro-$p$ groups, Birkhaüser Boston, Boston, MA, 2000.  MR 1765122 |  Zbl 0974.20022
[37] A.Zubkov, Non-abelian free pro-$p$-group are not represented by $2\times 2$-matrices. Siberian Math.J, 28 (1987), 64–69.  Zbl 0653.20026