staple
With cedram.org

Search the site

Table of contents for this issue | Previous article | Next article
Jean-Marc Deshouillers
Quand seule la sous-somme vide est nulle modulo ${p}$
Journal de théorie des nombres de Bordeaux, 19 no. 1 (2007), p. 71-79, doi: 10.5802/jtnb.574
Article PDF | Reviews MR 2332054 | Zbl 1153.11007

Résumé - Abstract

Let $c>1$, $p$ be a prime number and $\mathcal{A}$ a subset of $\mathbb{Z}/p\mathbb{Z}$ with cardinality larger than $c\sqrt{p}$ and such that for any non empty subset $\mathcal{B}$ of $\mathcal{A}$, one has $\sum _{b \in \mathcal{B}} b \ne 0$. We show that there exists $s$ coprime with $p$ such that the set $s.\mathcal{A}$ is very concentrated around the origin, and that it is almost exclusively composed of elements with a positive fractional part. More precisely, one has

$$ \sum _{a \in \mathcal{A}} \left\Vert \frac{sa}{p} \right\Vert < 1 + O(p^{-1/4} \ln p) \;\;\;\text{and}\!\! \sum _{\begin{array}{c}a \in \mathcal{A},\\ \lbrace sa/p\rbrace \ge 1/2\end{array}} \left\Vert \frac{sa}{p} \right\Vert = O(p^{-1/4} \ln p).$$

We also show that the error terms cannot be replaced by $o(p^{-1/2})$.

Bibliography

[1] Deshouillers J-M., A lower bound concerning subset sums which do not cover all the residues modulo $p$. Hardy-Ramanujan J. 28 (2005), 30–34.  MR 2192076 |  Zbl 05054472
[2] Deshouillers J-M., Freiman G. A., When subset-sums do not cover all the residues modulo $p$. J. Number Theory 104 (2004), 255–262.  MR 2029504 |  Zbl 1048.11077
[3] Erdős P., Heilbronn H., On the addition of the residue classes $\text{mod}\, p$. Acta Arith. IX (1964), 149–159. Article |  MR 166186 |  Zbl 0156.04801
[4] Olson J. E., An addition theorem modulo $p$. J. Combin. Theory 5 (1968), 45–52.  MR 227129 |  Zbl 0174.05202
[5] Ould Hamidoune Y., Zémor G., On zero sum-free sets. Acta Arith. LXXVIII (1996), 143–152.  MR 1424536 |  Zbl 0863.11016