staple
With cedram.org

Search the site

Table of contents for this issue | Previous article | Next article
Sylvain Duquesne
Elliptic curves associated with simplest quartic fields
Journal de théorie des nombres de Bordeaux, 19 no. 1 (2007), p. 81-100, doi: 10.5802/jtnb.575
Article PDF | Reviews MR 2332055 | Zbl 1123.11018 | 1 citation in Cedram

Résumé - Abstract

We are studying the infinite family of elliptic curves associated with simplest cubic fields. If the rank of such curves is 1, we determine the whole structure of the Mordell-Weil group and find all integral points on the original model of the curve. Note however, that we are not able to find them on the Weierstrass model if the parameter is even. We have also obtained similar results for an infinite subfamily of curves of rank 2. To our knowledge, this is the first time that so much information has been obtained both on the structure of the Mordell-Weil group and on integral points for an infinite family of curves of rank 2. The canonical height is the main tool we used for that study.

Bibliography

[1] H. Cohen, A Course in Computational Algebraic Number Theory. Graduate Texts in Math. 138, Springer-Verlag, 1993.  MR 1228206 |  Zbl 0786.11071
[2] J. Cremona, M. Prickett, S. Siksek, Height difference bounds for elliptic curves over number fields. Journal of Number Theory 116 (2006), 42–68.  MR 2197860 |  Zbl 05013264
[3] J. Cremona, S. Siksek, Computing a Lower Bound for the Canonical Height on Elliptic Curves over $\mathbb{Q}$. Algorithmic Number Theory, 7th International Symposium, ANTS-VII, LNCS 4076 (2006), 275–286.  MR 2282930
[4] S. Duquesne, Integral points on elliptic curves defined by simplest cubic fields. Exp. Math. 10:1 (2001), 91–102. Article |  MR 1822854 |  Zbl 0983.11031
[5] M. N. Gras, Table numérique du nombre de classes et des unités des extensions cycliques réelles de degré 4 de $\mathbb{Q}$. Publ. Math. Fac. Sci. Besancon, fasc 2 (1977/1978).  MR 898667 |  Zbl 0471.12006
[6] E. Halberstadt, Signes locaux des courbes elliptiques en 2 et 3. C. R. Acad. Sci. Paris Sér. I Math. 326:9 (1998), 1047–1052.  MR 1647190 |  Zbl 0933.11030
[7] H. K. Kim, Evaluation of zeta functions at $s=-1$ of the simplest quartic fields. Proceedings of the 2003 Nagoya Conference “Yokoi-Chowla Conjecture and Related Problems”, Saga Univ., Saga, 2004, 63–73.
[8] A. J. Lazarus, Class numbers of simplest quartic fields. Number theory (Banff, AB, 1988), de Gruyter, Berlin, 1990, 313–323.  MR 1106670 |  Zbl 0712.11061
[9] A. J. Lazarus, On the class number and unit index of simplest quartic fields. Nagoya Math. J. 121 (1991), 1–13. Article |  MR 1096465 |  Zbl 0719.11073
[10] S. Louboutin, The simplest quartic fields with ideal class groups of exponents less than or equal to 2. J. Math. Soc. Japan 56:3 (2004), 717–727. Article |  MR 2071669 |  Zbl 02111271
[11] P. Olajos, Power integral bases in the family of simplest quartic fields. Experiment. Math. 14:2 (2005), 129–132. Article |  MR 2169516 |  Zbl 1092.11042
[12] O. Rizzo, Average root numbers for a nonconstant family of elliptic curves. Compositio Math. 136:1 (2003), 1–23.  MR 1965738 |  Zbl 1021.11020
[13] S. Siksek, Infinite descent on elliptic curves. Rocky Mountain J. Math. 25:4 (1995), 1501–1538.  MR 1371352 |  Zbl 0852.11028
[14] J. H. Silverman, The arithmetic of elliptic curves. Graduate Texts in Mathematics 106, Springer-Verlag, 1986.  MR 817210 |  Zbl 0585.14026
[15] J. H. Silverman, Computing heights on elliptic curves. Math. Comp. 51 (1988), 339–358.  MR 942161 |  Zbl 0656.14016
[16] J. H. Silverman, The difference between the Weil height and the canonical height on elliptic curves. Math. Comp. 55 (1990), 723–743.  MR 1035944 |  Zbl 0729.14026