staple
With cedram.org

Search the site

Table of contents for this issue | Previous article | Next article
Omar Kihel; Florian Luca
Variants of the Brocard-Ramanujan equation
Journal de théorie des nombres de Bordeaux, 20 no. 2 (2008), p. 353-363, doi: 10.5802/jtnb.631
Article PDF | Reviews MR 2477508 | Zbl 1171.11020

Résumé - Abstract

In this paper, we discuss variations on the Brocard-Ramanujan Diophantine equation.

Bibliography

[1] D. Berend, C. Osgood, On the equation $P(x)=n!$ and a question of Erdős. J. Number Theory 42 (1992), no. 2, 189–193.  MR 1183375 |  Zbl 0762.11010
[2] D. Berend, J.E. Harmse, On polynomial-factorial diophantine equations. Trans. Amer. Math. Soc. 358 (2005), no 4, 1741–1779.  MR 2186995 |  Zbl 1114.11029
[3] B.C. Berndt, W.F. Galway, On the Brocard-Ramanujan Diophantine equation $n! + 1 = m^{2}$. The Ramanujan Journal 4 (2000), 41–42.  MR 1754629 |  Zbl 0999.11078
[4] H. Brocard, Question 166. Nouv. Corresp. Math. 2 (1876), 287.
[5] H. Brocard, Question 1532. Nouv. Ann. Math. 4 (1885), 291.
[6] A. Dabrowski, On the diophantine equation $n! + A = y^{2} $. Nieuw Arch. Wisk. 14 (1996), 321–324.  MR 1430045 |  Zbl 0876.11015
[7] P. Erdős, R. Obláth, Über diophantische Gleichungen der Form $n! = x^{p} \pm y^{p}$ und $n! \pm m! = x^{p}$. Acta Szeged 8 (1937), 241–255.  JFM 63.0113.02
[8] A. Gérardin, Contribution à l’étude de l’équation $1 \cdot 2 \cdot 3 \cdot 4 \cdots z +1 = y^{2}$. Nouv. Ann. Math. 6 (4) (1906), 222–226. Numdam |  JFM 37.0230.03
[9] H. Gupta, On a Brocard-Ramanujan problem. Math. Student 3 (1935), 71.  JFM 61.1074.28
[10] E. Landau, Handbuch der Lehre von der verteilung der Primzahlen, 3rd Edition. Chelsea Publ. Co., 1974.
[11] F. Luca, The Diophantine equation $P(x)=n!$ and a result of M. Overholt. Glas. Mat. Ser. III 37 (57) no. 2 (2002), 269–273.  MR 1951531 |  Zbl 1085.11023
[12] H.L. Montogomery, R.C. Vaughan, The large sieve. Mathematika 20 (1973), 119–134.  MR 374060 |  Zbl 0296.10023
[13] M. Overholt, The diophantine equation $n! + 1 = m^{2}$. Bull. London Math. Soc. 25 (1993), 104.  MR 1204060 |  Zbl 0805.11030
[14] R. M. Pollack, H. N. Shapiro, The next to last case of a factorial diophantine equation. Comm. Pure Appl. Math. 26 (1973), 313–325.  MR 360465 |  Zbl 0276.10011
[15] S. Ramanujan, Question 469. J. Indian Math. Soc. 5 (1913), 59.
[16] S. Ramanujan, Collected papers. New York, 1962.
[17] S. Wolfram, Math World. http://mathworld.wolfram.com/WilsonTheorem.html