staple
With cedram.org

Search the site

Table of contents for this issue | Previous article | Next article
Ján Mináč; Andrew Schultz; John Swallow
Automatic realizations of Galois groups with cyclic quotient of order ${p^n}$
Journal de théorie des nombres de Bordeaux, 20 no. 2 (2008), p. 419-430, doi: 10.5802/jtnb.635
Article PDF | Reviews MR 2477512 | Zbl pre05543170

Résumé - Abstract

We establish automatic realizations of Galois groups among groups $M\rtimes G$, where $G$ is a cyclic group of order $p^n$ for a prime $p$ and $M$ is a quotient of the group ring $\mathbb{F}_p[G]$.

Bibliography

[1] F. Anderson, K. Fuller, Rings and categories of modules. Graduate Texts in Mathematics 13. New York: Springer-Verlag, 1973.  MR 1245487 |  Zbl 0301.16001
[2] H. G. Grundman, T. L. Smith, Automatic realizability of Galois groups of order $16$. Proc. Amer. Math.  Soc. 124 (1996), no. 9, 2631–2640.  MR 1327017 |  Zbl 0862.12005
[3] H. G. Grundman, T. L. Smith, and J. R. Swallow, Groups of order $16$ as Galois groups. Exposition. Math. 13 (1995), 289–319.  MR 1358210 |  Zbl 0838.12004
[4] C. U. Jensen, On the representations of a group as a Galois group over an arbitrary field. Théorie des nombres (Quebec, PQ, 1987), 441–458. Berlin: de Gruyter, 1989.  MR 1024582 |  Zbl 0696.12019
[5] C. U. Jensen, Finite groups as Galois groups over arbitrary fields. Proceedings of the International Conference on Algebra, Part 2 (Novosibirsk, 1989), 435–448. Contemp. Math. 131, Part 2. Providence, RI: American Mathematical Society, 1992.  MR 1175848 |  Zbl 0780.12004
[6] C. U. Jensen, Elementary questions in Galois theory. Advances in algebra and model theory (Essen, 1994; Dresden, 1995), 11–24. Algebra Logic Appl. 9. Amsterdam: Gordon and Breach, 1997.  MR 1683567 |  Zbl 0939.12001
[7] C. U. Jensen, A. Ledet, N. Yui, Generic polynomials: constructive aspects of the inverse Galois problem. Mathematical Sciences Research Institute Publications 45. Cambridge: Cambridge University Press, 2002.  MR 1969648 |  Zbl 1042.12001
[8] T. Y. Lam, Lectures on modules and rings. Graduate Texts in Mathematics 189. New York: Springer-Verlag, 1999.  MR 1653294 |  Zbl 0911.16001
[9] A. Ledet, Brauer type embedding problems. Fields Institute Monographs 21. Providence, RI: American Mathematical Society, 2005.  MR 2126031 |  Zbl 1064.12003
[10] J. Mináč, J. Swallow, Galois module structure of $p$th-power classes of extensions of degree $p$. Israel J. Math. 138 (2003), 29–42.  MR 2031948 |  Zbl 1040.12006
[11] J. Mináč, J. Swallow, Galois embedding problems with cyclic quotient of order $p$. Israel J. Math. 145 (2005), 93–112.  MR 2154722 |  Zbl 1069.12002
[12] J. Mináč, A. Schultz, J. Swallow, Galois module structure of the $p$th-power classes of cyclic extensions of degree $p^n$. Proc. London Math. Soc. 92 (2006), no. 2, 307–341.  MR 2205719 |  Zbl pre05014380
[13] D. Saltman, Generic Galois extensions and problems in field theory. Adv. in Math. 43 (1982), 250–283.  MR 648801 |  Zbl 0484.12004
[14] D. Sharpe, P. Vámos, Injective modules. Cambridge Tracts in Mathematics and Mathematical Physics 62. London: Cambridge University Press, 1972.  MR 360706 |  Zbl 0245.13001
[15] W. Waterhouse, The normal closures of certain Kummer extensions. Canad. Math. Bull. 37 (1994), no. 1, 133–139.  MR 1261568 |  Zbl 0794.12003