Search the site

Table of contents for this issue | Previous article | Next article
Xavier Caruso; David Savitt
Poids de l’inertie modérée de certaines représentations cristallines
Journal de théorie des nombres de Bordeaux, 22 no. 1 (2010), p. 79-96, doi: 10.5802/jtnb.705
Article PDF | Reviews MR 2675874 | Zbl 1223.14022

Résumé - Abstract

Tame inertia weights of certain crystalline representations

In this note we give a complete proof of Theorem 4.1 of [5], whose aim is to describe the action of tame inertia on the semi-simplification mod $p$ of a certain (small) family of crystalline representations $V$ of the absolute Galois group of a $p$-adic field $K$. This kind of computation was already accomplished by Fontaine and Laffaille when $K$ is absolutely unramified; in that setting, they proved that the action of tame inertia is completely determined by the Hodge-Tate weights of $V$, provided that those weights all belong to an interval of length $p-2$. The examples considered in this article show in particular that the result of Fontaine-Laffaille is no longer true when $K$ is absolutely ramified.


[1] C. Breuil, Représentations $p$-adiques semi-stables et transversalité de Griffiths. Math. Annalen 307 (1997), 191–224.  MR 1428871 |  Zbl 0883.11049
[2] C. Breuil, Integral $p$-adic Hodge theory. Advanced studies in pure mathematics 36 (2002), 51–80.  MR 1971512 |  Zbl 1046.11085
[3] C. Breuil, A. Mézard, Multiplicités modulaires et représentations de $\text{GL}_2(\mathbb{Z}_p)$ et de $\text{Gal}(\bar{\mathbb{Q}}_p/\mathbb{Q}_p)$ en $\ell = p$. Duke math. J. 115 (2002), 205–310. Article |  MR 1944572 |  Zbl 1042.11030
[4] X. Caruso, Représentations semi-stables de torsion dans le cas $er < p-1$. J. reine angew. Math. 594 (2006), 35–92.  MR 2248152 |  Zbl 1134.14013
[5] X. Caruso, D. Savitt, Polygones de Hodge, de Newton et de l’inertie modérée des représentations semi-stables. À paraître dans Math. Ann.  Zbl pre05533125
[6] J. M. Fontaine, G. Laffaille, Construction de représentations $p$-adiques. Ann. Sci. École Norm. Sup. 15 (1982), 547–608. Numdam |  MR 707328 |  Zbl 0579.14037
[7] N. Katz, Slope filtration of $F$-crystals. Astérisque 63 (1979), 113–164.  MR 563463 |  Zbl 0426.14007