staple
With cedram.org

Search the site

Table of contents for this issue | Previous article | Next article
Ade Irma Suriajaya
Two estimates on the distribution of zeros of the first derivative of Dirichlet $L$-functions under the generalized Riemann hypothesis
Journal de théorie des nombres de Bordeaux, 29 no. 2 (2017), p. 471-502, doi: 10.5802/jtnb.988
Article PDF
Class. Math.: 11M06
Keywords: Dirichlet $L$-functions, first derivative, zeros

Résumé - Abstract

The number of zeros and the distribution of the real part of non-real zeros of the derivatives of the Riemann zeta function have been investigated by B. C. Berndt, N. Levinson, H. L. Montgomery, H. Akatsuka, and the author. Berndt, Levinson, and Montgomery investigated the unconditional case, while Akatsuka and the author gave sharper estimates under the truth of the Riemann hypothesis. Recently, F. Ge improved the estimate on the number of zeros shown by Akatsuka. In this paper, we prove similar results related to the first derivative of Dirichlet $L$-functions associated with primitive Dirichlet characters under the assumption of the generalized Riemann hypothesis.

Bibliography

[1] Hirotaka Akatsuka, Conditional estimates for error terms related to the distribution of zeros of $\zeta ^{\prime }(s)$, J. Number Theory 132 (2012), p. 2242-2257 Article
[2] Hirotaka Akatsuka & Ade Irma Suriajaya, “Zeros of the first derivative of Dirichlet $L$-functions”, https://arxiv.org/abs/1604.08015, 2016
[3] Bruce C. Berndt, The number of zeros for $\zeta ^{(k)}(s)$, J. Lond. Math. Soc. 2 (1970), p. 577-580 Article
[4] Fan Ge, The number of zeros of $\zeta ^{\prime }(s)$, Int. Math. Res. Not. 2017 (2017), p. 1578-1588
[5] Norman Levinson & Hugh L. Montgomery, Zeros of the derivatives of the Riemann zeta-function, Acta Math. 133 (1974), p. 49-65 Article
[6] Hugh L. Montgomery & Robert C. Vaughan, “Errata of Multiplicative Number Theory I: Classical Theory”, http://www-personal.umich.edu/~hlm/mnt1err.pdf
[7] Hugh L. Montgomery & Robert C. Vaughan, Multiplicative Number Theory I: Classical Theory, Cambridge Studies in Advanced Mathematics 97, Cambridge University Press, 2006
[8] Atle Selberg, Contributions to the theory of Dirichlet’s $L$-functions, Skr. Norske Vid.-Akad., Oslo I. 1946 (1946), p. 1-62
[9] Andreas Speiser, Geometrisches zur Riemannschen Zetafunktion, Math. Ann. 110 (1934), p. 514-521 Article |  MR 1512953
[10] Ade Irma Suriajaya, On the zeros of the $k$-th derivative of the Riemann zeta function under the Riemann Hypothesis, Funct. Approx. Comment. Math. 53 (2015), p. 69-95 Article
[11] Edward Charles Titchmarsh, The theory of functions, Oxford University Press, 1939
[12] Edward Charles Titchmarsh, The theory of the Riemann zeta-function, Oxford Science Publications, Oxford University Press, 1986
[13] Cem Yalçın Yıldırım, Zeros of derivatives of Dirichlet $L$-functions, Turk. J. Math. 21 (1997), p. 521-534
[14] Yitang Zhang, On the zeros of $\zeta ^{\prime }(s)$ near the critical line, Duke Math. J. 110 (2001), p. 55-572 Article |  MR 1869116