staple
With cedram.org

Search the site

Table of contents for this issue | Previous article | Next article
Josep González
Constraints on the automorphism group of a curve
Journal de théorie des nombres de Bordeaux, 29 no. 2 (2017), p. 535-548, doi: 10.5802/jtnb.990
Article PDF
Class. Math.: 14G35, 14H37
Keywords: Automorphisms of curves, non-split Cartan modular curves

Résumé - Abstract

For a curve of genus $>1$ defined over a finite field, we present a sufficient criterion for the non-existence of automorphisms of order a power of a rational prime. We show how this criterion can be used to determine the automorphism group of some modular curves of high genus.

Bibliography

[1] Matthew Baker & Yuji Hasegawa, Automorphisms of $X_0^*(p)$, J. Number Theory 100 (2003), p. 72-87 Article
[2] Burcu Baran, Normalizers of non-split Cartan subgroups, modular curves, and the class number one problem, J. Number Theory 130 (2010), p. 2753-5772 Article
[3] Imin Chen, The Jacobians of non-split Cartan modular curves, Proc. Lond. Math. Soc. 77 (1998), p. 1-38 Article
[4] Valerio Dose, On the automorphisms of the non-split Cartan modular curves of prime level, Nagoya Math. J. 224 (2016), p. 74-92 Article
[5] Valerio Dose, Julio Fernández, Josep González & René Schoof, The automorphism group of the non-split Cartan modular curve of level 11, J. Algebra 417 (2014), p. 95-102 Article
[6] Josep González, Automorphism group of split Cartan modular curves, Bull. Lond. Math. Soc. 48 (2016), p. 628-636 Article
[7] M.A. Kenku & Fumiyuki Momose, Automorphism groups of the modular curves $X_0(N)$, Compos. Math. 65 (1988), p. 51-80
[8] Qing Liu, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics 6, Oxford University Press, 2002
[9] Henning Stichtenoth, Über die Automorphismengruppe eines algebraischen Funktionenkörpers von Primzahlcharakteristik. I. Eine Abschätzung der Ordnung der Automorphismengruppe, Arch. Math. 24 (1973), p. 527-544 Article