Search the site

Table of contents for this issue | Previous article | Next article
Atsuhira Nagano
Icosahedral invariants and Shimura curves
Journal de théorie des nombres de Bordeaux, 29 no. 2 (2017), p. 603-635, doi: 10.5802/jtnb.993
Article PDF
Class. Math.: 11F46, 14J28, 14G35, 11R52
Keywords: $K3$ surfaces, Abelian surfaces, Shimura curves, Hilbert modular functions, quaternion algebra

Résumé - Abstract

Shimura curves are moduli spaces of abelian surfaces with quaternion multiplication. Models of Shimura curves are very important in number theory. Klein’s icosahedral invariants $\mathfrak{A},\mathfrak{B}$ and $\mathfrak{C}$ give the Hilbert modular forms for $\sqrt{5}$ via the period mapping for a family of $K3$ surfaces. Using the period mappings for several families of $K3$ surfaces, we obtain explicit models of Shimura curves with small discriminant in the weighted projective space $\mathrm{Proj}(\mathbb{C}[\mathfrak{A},\mathfrak{B},\mathfrak{C}])$.


[1] Sang Yook An, Seog Young Kim, David C. Marshall, Susan H. Marshall, William G. McCallum & Alexander R. Perlis, Jacobians of Genus One Curves, J. Number Theory 90 (2001), p. 304-315 Article
[2] Amnon Besser, Elliptic fibrations of $K3$ surfaces and QM Kummer surfaces, Math. Z. 288 (1998), p. 283-308 Article
[3] Matteo Alfonso Bonfanti & Bert Van Geemen, Abelian surfaces with an automorphism and quaternionic multiplication, Can. J. Math. 68 (2016), p. 24-43 Article
[4] Adrian Clingher & Charles F. Doran, Lattice polarized $K3$ surfaces and Siegel modular forms, Adv. Math. 231 (2012), p. 172-212 Article
[5] David Cox, John Little & Donal O’Shea, Using algebraic geometry, Graduate Texts in Mathematics 185, Springer, 1998
[6] Igor V. Dolgachev, Mirror symmetry for lattice polarized $K3$ surfaces, J. Math. Sci., New York 81 (1996), p. 2599-2630 Article |  MR 1420220
[7] Noam Elkies, Shimura curve computations, in Algorithmic number theory. 3rd international symposium, Lecture Notes in Computer Science, Springer, 1998, p. 1-47
[8] Noam Elkies, Shimura curve computations via $K3$ surfaces of Néron-Severi rank at least $19$, in Algorithmic number theory. 8th international symposium, Lecture Notes in Computer Science, Springer, 2008, p. 196-211
[9] Noam Elkies & Abhinav Kumar, $K3$ Surfaces and equations for Hilbert modular surfaces, Algebra Number Theory 8 (2014), p. 2297-2411 Article
[10] Gerard van der Geer, Hilbert modular surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete 16, Springer, 1988
[11] Kenji Hashimoto, Atsuhira Nagano & Kazushi Ueda, “Modular surfaces associated with toric $K3$ surfaces”,, 2014
[12] Ki-Ichiro Hashimoto, Explicit form of quaternion modular embeddings, Osaka J. Math. 32 (1995), p. 533-546
[13] Ki-Ichiro Hashimoto & Naoki Murabayashi, Shimura curves as intersections of Humbert surfaces and defining equations of QM-curves of genus two, Tôhoku Math. J. 47 (1995), p. 271-296 Article
[14] Friedrich Hirzebruch, The ring of Hilbert modular forms for real quadratic fields of small discriminant, in Modular Funct. of one Var. VI, Proc. int. Conf., Bonn 1976, Lecture Notes in Mathematics, Springer, 1977, p. 287-323
[15] Georges Humbert, Sur les fonctions abéliennes singulières, Oeuvres de G. Humbert 2, pub. par les soins de Pierre Humbert et de Gaston Julia, Gauthier-Villars, 1936, p. 297–401
[16] Felix Klein, Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade, Tauber, 1884
[17] David R. Kohel & Helena A. Verrill, Fundamental Domains for Shimura Curves, J. Théor. Nombres Bordx 15 (2003), p. 205-222 Article
[18] Abhinav Kumar, $K3$ surfaces associated to curves of genus two, Int. Math. Res. Not. 16 (2008)
[19] Akira Kurihara, On some examples of equations defining Shimura curves and the Mumford uniformization, J. Fac. Sci., Univ. Tokyo 25 (1978), p. 277-300
[20] Rolf Müller, Hilbertsche Modulformen und Modulfunktionen zu $\mathbb{Q}(\sqrt{5})$, Arch. Math. 45 (1985), p. 239-251 Article
[21] Atsuhira Nagano, Period differential equations for the families of $K3$ surfaces with two parameters derived from the reflexive polytopes, Kyushu J. Math. 66 (2012), p. 193-244 Article
[22] Atsuhira Nagano, A theta expression of the Hilbert modular functions for $\sqrt{5}$ via period of $K3$ surfaces, Kyoto J. Math. 53 (2013), p. 815-843 Article
[23] Atsuhira Nagano, Double integrals on a weighted projective plane and Hilbert modular functions for $\mathbb{Q}(\sqrt{5})$, Acta Arith. 167 (2015), p. 327-345 Article
[24] Atsuhira Nagano, “Icosahedral invariants and a construction of class fields via periods of $K3$ surfaces”,, 2017
[25] Atsuhira Nagano & Hironori Shiga, Modular map for the family of abelian surfaces via elliptic $K3$ surfaces, Math. Nachr. 288 (2015), p. 89-114 Article
[26] Victor Rotger, Modular Shimura varieties and forgetful maps, Trans. Am. Math. Soc. 356 (2004), p. 1535-1550 Article
[27] Victor Rotger, Shimura curves embedded in Igusa’s threefold, Modular curves and Abelian varieties. Based on lectures of the conference, Bellaterra, Barcelona, July 2002, Prog. Math. 224, Birkhäuser, 2004, p. 263–276
[28] Goro Shimura, Construction of class fields and zeta functions of algebraic curves, Ann. Math. 85 (1967), p. 58-159 Article |  MR 204426
[29] Goro Shimura, On canonical models of arithmetic quotients of bounded symmetric domains, Ann. Math 91 (1970), p. 144-222 Article
[30] Goro Shimura, On the real points of an arithmetic quotient of a bounded symmetric domain, Math. Ann. 215 (1975), p. 135-164 Article
[31] Goro Shimura, Abelian Varieties with Complex Multiplication and Modular Functions, Princeton Mathematical Series 46, Princeton University Press, 1998
[32] Marie-France Vignéras, Arithmétiques des algèbres de quaternions, Lecture Notes in Mathematics 80, Springer, 1980
[33] John Voight, Shimura Curve Computations, Arithmetic geometry, Clay Mathematics Proceedings 8, Clay Mathematics Institute, 2009, p. 103–113
[34] Yifan Yang, “Quaternionic loci in Siegel’s modular threefolds” 2015, http//