staple
With cedram.org

Search the site

Table of contents for this issue | Previous article | Next article
Cindy (Sin Yi) Tsang
Realizable Classes and Embedding Problems
Journal de théorie des nombres de Bordeaux, 29 no. 2 (2017), p. 647-680, doi: 10.5802/jtnb.995
Article PDF
Class. Math.: 11R04, 11R32, 11R33
Keywords: Galois module, rings of integers, realizable classes, embedding problems

Résumé - Abstract

Let $K$ be a number field and denote by $\mathcal{O}_K$ its ring of integers. Let $G$ be a finite group and let $K_h$ be a Galois $K$-algebra with group $G$. If $K_h/K$ is tame, then its ring of integers $\mathcal{O}_h$ is a locally free $\mathcal{O}_KG$-module by a classical theorem of E. Noether and it defines a class in the locally free class group $\mathrm{Cl}(\mathcal{O}_KG)$ of $\mathcal{O}_KG$. We denote by $R(\mathcal{O}_KG)$ the set of all such classes. By combining the work of L.R. McCulloh and J. Brinkhuis, we shall prove that the structure of $R(\mathcal{O}_KG)$ is connected to the study of embedding problems when $G$ is abelian.

Bibliography

[1] Jan Brinkhuis, Normal integral bases and embedding problems, Math. Ann. 264 (1983), p. 537-543 Article
[2] Jan Brinkhuis, Galois modules and embedding problems, J. Reine Angew. Math. 346 (1984), p. 141-165
[3] Charles W. Curtis & Irving Reiner, Methods of representation theory with applications to finite groups and orders. Vol. I, Pure and Applied Mathematics, John Wiley & Sons, 1981
[4] Charles W. Curtis & Irving Reiner, Methods of representation theory with applications to finite groups and orders. Vol. II, Pure and Applied Mathematics, John Wiley & Sons, 1987
[5] Boas Erez, The Galois structure of the square root of the inverse different, Math. Z. 208 (1991), p. 239-255 Article
[6] Albrecht Fröhlich, Local fields, Algebraic number theory, Academic Press, 1967
[7] Leon R. McCulloh, Galois module structure of abelian extensions, J. Reine Angew. Math. 375/376 (1987), p. 259-306
[8] Jürgen Neukirch, Alexander Schmidt & Kay Wingberg, Cohomology of Number Fields, Grundlehren der Mathematischen Wissenschaften 323, Springer, 2008
[9] Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics 67, Springer, 1979
[10] Cindy Tsang, On the Galois module structure of the square root of the inverse different in abelian extensions, J. Number Theory 160 (2016), p. 759-804 Article
[11] Cindy Tsang, On the Galois module structure of the square root of the inverse different in abelian extensions, Ph. D. Thesis, University of California (USA), 2016
[12] Stephen V. Ullom, Integral normal bases in Galois extensions of local fields, Nagoya Math. J. 39 (1970), p. 141-148 Article