staple
With cedram.org

Search the site

Table of contents for this issue | Previous article | Next article
Dirk Basson; Florian Breuer
On certain Drinfeld modular forms of higher rank
Journal de théorie des nombres de Bordeaux, 29 no. 3 (2017), p. 827-843, doi: 10.5802/jtnb.1003
Article PDF
Class. Math.: 11F52, 11G09
Keywords: Drinfeld modular forms, Drinfeld modules

Résumé - Abstract

We give an introduction to Drinfeld modular forms for principal congruence subgroups of $\mathrm{GL}_r(\mathbb{F}_q[t])$, and then construct a rank $r$ analogue of the $h$-function. We show that this function is a cusp form of weight $(q^r-1)/(q-1)$ and type 1 which satisfies a product formula. Along the way, we compute the expansion at infinity of weight one Eisenstein series of level $N\in \mathbb{F}_q[t]$.

Bibliography

[1] Dirk Basson, On the coefficients of Drinfeld modular forms of higher rank, Ph. D. Thesis, Stellenbosch University, South Africa, http://scholar.sun.ac.za/handle/10019.1/86387, 2014
[2] Dirk Basson, A product formula for the higher rank Drinfeld discriminant function, J. Number Theory 178 (2017), p. 190-200 Article
[3] Dirk Basson, Florian Breuer & Richard Pink, “Drinfeld modular forms of arbitrary rank”, manuscript in preparation, 2017
[4] Florian Breuer, A note on Gekeler’s $h$-function, Arch. Math. 107 (2016), p. 305-313 Article
[5] Florian Breuer & Hans-Georg Rück, Drinfeld modular polynomials in higher rank, J. Number Theory 129 (2009), p. 59-83 Article
[6] Vladimir Gershonovich Drinfeld, Elliptic modules, Mat. Sb. 94 (1974), p. 594-627
[7] Ernst-Ulrich Gekeler, Modulare Einheiten für Funktionenkörper, J. Reine Angew. Math. 348 (1984), p. 94-115
[8] Ernst-Ulrich Gekeler, Satake compactification of Drinfeld modular schemes, in Proceedings of the conference on $p$-adic analysis (Houthalen, 1986), Vrije Universiteit Brussel, 1986, p. 71-81
[9] Ernst-Ulrich Gekeler, On the coefficients of Drinfeld modular forms, Invent. Math. 93 (1988), p. 667-700 Article
[10] Ernst-Ulrich Gekeler, Quasi-periodic functions and Drinfeld modular forms, Compos. Math. 69 (1989), p. 277-293
[11] Ernst-Ulrich Gekeler, On Drinfeld modular forms of higher rank, J. Théor. Nombres Bordx. 29 (2017)
[12] Ernst-Ulrich Gekeler, “Towers of $GL(r)$-type of modular curves”, to appear in J. Reine Angew. Math., 2017
[13] Lothar Gerritzen & Marius van der Put, Schottky groups and Mumford curves, Lecture Notes in Mathematics 817, Springer, 1980
[14] David Goss, The algebraist’s upper half-plane, Bull. Am. Math. Soc. 2 (1980), p. 391-415 Article
[15] David Goss, $\pi $-adic Eisenstein series for function fields, Compos. Math. 41 (1980), p. 3-38
[16] David Goss, Some integrals attached to modular forms in the theory of function fields, The arithmetic of function fields, Ohio State University Mathematical Research Institute Publications 2, Walter de Gruyter, 1992, p. 227–251
[17] David Goss, Basic structures of function field arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3 35, Springer, 1996
[18] David Goss 2016, private communication
[19] Yoshinori Hamahata, On a product expansion for the Drinfeld discriminant function, J. Ramanujan Math. Soc. 17 (2002), p. 173-185
[20] Mikhail M. Kapranov, Cuspidal divisors on the modular varieties of elliptic modules, Izv. Akad. Nauk SSSR, Ser. Mat. 51 (1987), p. 568-583
[21] Rudolph Perkins, “The Legendre determinant form for Drinfeld modules in arbitrary rank”, https://arxiv.org/abs/1409.6693, 2014
[22] Richard Pink, Compactification of Drinfeld modular varieties and Drinfeld modular forms of arbitrary rank, Manuscr. Math. 140 (2013), p. 333-361 Article