staple
With cedram.org

Search the site

Table of contents for this issue | Previous article | Next article
Bruno Anglès; Tuan Ngo Dac; Floric Tavares Ribeiro
Special functions and twisted $L$-series
Journal de théorie des nombres de Bordeaux, 29 no. 3 (2017), p. 931-961
Article PDF
Class. Math.: 11M38, 11F52, 11G09
Keywords: Goss $L$-functions, several variable $L$-series, Drinfeld modules

Résumé - Abstract

We present a generalization of the Anderson–Thakur special function, and we prove a rationality result for several variable twisted $L$-series associated to shtuka functions.

Bibliography

[1] Greg W. Anderson, Rank one elliptic $A$-modules and $A$-harmonic series, Duke Math. J. 73 (1994), p. 491-542
[2] Greg W. Anderson, Log-Algebraicity of Twisted $A$-Harmonic Series and Special Values of $L$-series in Characteristic $p$, J. Number Theory 60 (1996), p. 165-209
[3] Greg W. Anderson & Dinesh S. Thakur, Tensor Powers of the Carlitz Module and Zeta Values, Ann. Math. 132 (1990), p. 159-191
[4] Bruno Anglès, Tuan Ngo Dac & Floric Tavares Ribeiro, “Exceptional Zeros of $L$-series and Bernoulli–Carlitz Numbers”, https://arxiv.org/abs/1511.06209, 2015
[5] Bruno Anglès, Tuan Ngo Dac & Floric Tavares Ribeiro, Twisted Characteristic $p$ Zeta Functions, J. Number Theory 168 (2016), p. 180-214
[6] Bruno Anglès, Tuan Ngo Dac & Floric Tavares Ribeiro, Stark units in positive characteristic, Proc. Lond. Math. Soc. 115 (2017), p. 763-812
[7] Bruno Anglès & Federico Pellarin, Universal Gauss-Thakur sums and $L$-series, Invent. Math. 200 (2015), p. 653-669
[8] Bruno Anglès, Federico Pellarin & Floric Tavares Ribeiro, “Anderson-Stark units for $\mathbb{F}_q[\theta ]$”, https://arxiv.org/abs/1501.06804, to appear in Trans. Am. Math. Soc., 2016 Article
[9] Bruno Anglès, Federico Pellarin & Floric Tavares Ribeiro, Arithmetic of positive characteristic $L$-series values in Tate algebras, Compos. Math. 152 (2016), p. 1-61
[10] Bruno Anglès & Lenny Taelman, Arithmetic of characteristic $p$ special $L$-values, Proc. Lond. Math. Soc. 110 (2015), p. 1000-1032
[11] Bruno Anglès & Floric Tavares Ribeiro, Arithmetic of function fields units, Math. Ann. 367 (2017), p. 501-579
[12] Florent Demeslay, “A class formula for $L$-series in positive characteristic”, https://arxiv.org/abs/1412.3704, 2014
[13] Jiangxue Fang, “Equivariant Special $L$-values of abelian $t$-modules”, https://arxiv.org/abs/1503.07243, 2015
[14] Jiangxue Fang, Special $L$-values of abelian $t$-modules, J. Number Theory 147 (2015), p. 300-325
[15] Jiangxue Fang, Equivariant trace formula mod $p$, C. R., Math., Acad. Sci. Paris 354 (2016), p. 335-338 Article
[16] David Goss, Basic Structures of Function Field Arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3 35, Springer, 1996
[17] Nathan Green & Matthew A. Papanikolas, “Special $L$-values and shtuka functions for Drinfeld modules on elliptic curves”, https://arxiv.org/abs/1607.04211, to appear in Research in the Mathematical Sciences, 2016
[18] Matthew A. Papanikolas, “Log-Algebraicity on Tensor Powers of the Carlitz Module and Special Values of Goss $L$-Functions”, work in progress
[19] Federico Pellarin, Values of certain $L$-series in positive characteristic, Ann. Math. 176 (2012), p. 2055-2093
[20] Lenny Taelman, A Dirichlet unit theorem for Drinfeld modules, Math. Ann. 348 (2010), p. 899-907
[21] Lenny Taelman, Special $L$-values of Drinfeld modules, Ann. Math. 175 (2012), p. 369-391
[22] Dinesh S. Thakur, Gauss sums for $\mathbb{F}_q[T]$, Invent. Math. 94 (1988), p. 105-112
[23] Dinesh S. Thakur, Shtukas and Jacobi sums, Invent. Math. 111 (1993), p. 557-570