Search the site

Table of contents for this issue | Previous article | Next article
Stephan Baier
The large sieve with square norm moduli in $\protect \mathbb{Z}[i]$
Journal de théorie des nombres de Bordeaux, 30 no. 1 (2018), p. 93-115, doi: 10.5802/jtnb.1018
Article PDF
Class. Math.: 11L03, 11R04
Keywords: Large Sieve, Gaussian integers

Résumé - Abstract

We prove a large sieve inequality for square norm moduli in $\mathbb{Z}[i]$.


[1] Stephan Baier, On the large sieve with sparse sets of moduli, J. Ramanujan Math. Soc. 21 (2006), p. 279-295
[2] Stephan Baier & Liangyi Zhao, An improvement for the large sieve for square moduli, J. Number Theory 128 (2008), p. 154-174 Article
[3] Enrico Bombieri & Henryk Iwaniec, On the order of $\zeta (1/2+it)$, Ann. Sc. Norm. Super. Pisa, Cl. Sci. 13 (1986), p. 449-472
[4] Martin N. Huxley, The large sieve inequality for algebraic number fields, Mathematika, Lond. 15 (1968), p. 178-187 Article
[5] Waldemar Schlackow, A sieve problem over the Gaussian integers, Ph. D. Thesis, University of Oxford, UK, 2010
[6] Liangyi Zhao, Large sieve inequality for characters to square moduli, Acta Arith 112 (2004), p. 297-308 Article