staple
With cedram.org

Search the site

Table of contents for this issue | Previous article | Next article
Yuji Tsuno
Degeneration of the Kummer sequence in characteristic $p>0$
Journal de théorie des nombres de Bordeaux, 22 no. 1 (2010), p. 219-257, doi: 10.5802/jtnb.713
Article PDF | Reviews MR 2675882 | Zbl 1237.14055
Class. Math.: 13B05, 14L15, 12G05

Résumé - Abstract

We study a deformation of the Kummer sequence to the radicial sequence over an $\mathbb{F}_p$-algebra, which is somewhat dual for the deformation of the Artin-Schreier sequence to the radicial sequence, studied by Saidi. We also discuss some relations between our sequences and the embedding of a finite flat commutative group scheme into a connected smooth affine commutative group schemes, constructed by Grothendieck.

Bibliography

[1] M. Demazure and P. Gabriel, Groupes algébriques, Tome I. Masson & Cie, Editeur, Paris; North-Holland Publishing, Amsterdam, 1970.  MR 302656 |  Zbl 0203.23401
[2] A. Grothendieck, Le groupe de Brauer. Dix exposés sur la cohomologie des schémas, 46–188. North-Holland, 1968.  MR 244269
[3] B. Mazur, L. Roberts, Local Euler Characteristics. Invent. math. 9 (1970), 201–234.  MR 258844 |  Zbl 0191.19202
[4] M. Saidi, On the degeneration of étale $\mathbb{Z}/p\mathbb{Z}$ and $\mathbb{Z}/{p^2}\mathbb{Z}$-torsors in equal characteristic $p>0$. Hiroshima. Math. J. 37 (2007), 315–341. Article |  MR 2345371 |  Zbl 1155.14025
[5] T. Sekiguchi and N. Suwa, Théorie de Kummer-Artin-Schreier et applications. J. Théor. Nombres Bordeaux 7 (1995), 177–189. Cedram |  MR 1413576 |  Zbl 0920.14023
[6] T. Sekiguchi, F. Oort and N. Suwa, On the deformation of Artin-Schreier to Kummer. Ann. Sci. École Norm. Sup. (4) 22 (1989), 345–375. Numdam |  MR 1011987 |  Zbl 0714.14024
[7] J. P. Serre, Groupes algébriques et corps de classes. Hermann, Paris, 1959.  MR 103191 |  Zbl 0097.35604
[8] R. P. Stanley, Enumerative Combinatorics, vol. 1. Cambridge Stud. Adv. Math. vol. 49, Cambridge University Press, Cambridge, 1997.  MR 1442260 |  Zbl 0889.05001
[9] N. Suwa, Twisted Kummer and Kummer-Artin-Schreier theories. Tôhoku Math. J. 60 (2008), 183–218. Article |  MR 2428860 |  Zbl 1145.13005
[10] N. Suwa, Around Kummer theories. RIMS Kôkyûroku Bessatsu B12 (2009), 115–148.  Zbl pre05635228
[11] J. Tate and F. Oort, Group scheme of prime order. Ann. Sci. Éc. Norm. Sup. (4) 3 (1970), 1–21. Numdam |  MR 265368 |  Zbl 0195.50801
[12] W. C. Waterhouse, Introduction to affine group schemes. Springer, 1979.  MR 547117 |  Zbl 0442.14017
[13] W. C. Waterhouse, A unified Kummer-Artin-Schreier sequence. Math. Ann. 277 (1987), 447–451.  MR 891585 |  Zbl 0608.12026
[14] W. C. Waterhouse and B. Weisfeiler, One-dimensional affine group schemes. J. Algebra 66 (1980), 550–568.  MR 593611 |  Zbl 0452.14013